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1. 'Ihe motion of a gyroscopic pendulum whose point ofsuspension is 

subjected to the horizontal acceleration components At and A has been 

studied by many authors. It is well known [l] that if the nuyational 

motion and damping are not considered, then for small angular defections 

of the pendulum axis from the vertical, a and p, this problem reduces to 

the solution of a system of linear first order differential equations 

(1.1) 

where g is the acceleration due to gravity, m is the mass of the gyro 

Ilousing and the rotor, and /I is the kinetic moment of the rotor of the 

gyroscope. 

In the usual statement of the problem At and A,, are assumed to be 
given functions of time, and the analysis of the system (1.1) does not 

present any fundamental difficulties. In some problems, however, in addi- 

tion to the horizontal components of acceleration of the suspension 

point, the vertical component of acceleration A 
i 
can also produce a 

significant effect, and all three acceleration components are random 

functions of time. 

An example of such a problem is the study of the motion of a gyro- 

scopic pendulum on a ship, where the presence of heaving causes a random 

displacement of the pendulum support. A similar problem arises during 

the study of the behavior of a gyroscopic pendulum carried by an air- 

plane, as well as in a number of other cases. 

For problems of such type, tile following systrrn of equations of motion 
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can be written considering the assumptions made above 

$A~)+kn,, (1.2) 

;F;;:F;, A,, and Ai, and consequently a(t) and p(t), are random functions 

1 

With the presence of damping, which can occur as a result of air re- 

sistance or forces of viscous drag at the support axes, the system (1.2) 

changes into the following system of equations 

(1.3) 

Here n is the ratio of the damping coefficient (we assume it to be the 

same for both axes of the universal support) to the kinetic moment of the 

gyroscope rotor fl. 

When we introduce instead of the real functions CC(~) and p(t) the 

complex function y( t f , the above system can be written in terms of a 

single equation 

Without damping, the solution of the problem can be obtained from the 

solution of Equation (1.4) if n = 0 is substituted. The function y(t) is 

random, and consequently, the solution of Equation (1.4) reduces to the 

problem of determining all laws of distribution of the ordinates of this 

function. Even with conditions of normality on the random processes Y(t), 

V( tl and b’(t) this problem is very complicated. For the purpose of 

appl icat ions, however, it is sufficient to know only the mathematical 

expectation and dispersion of the angular deflections a(t) and p(t). Tt 

will be shown later that the moments of these functions can be determined 

in general form for any system of random functions Y(t), Vf t) and W(t), 

and in the case when these functions are normal one can obtain simple 

computational formulas. 

Since j y( t) j = J (a* + G*) gives tlie Jeviatiorl of tltc axis of t!ttt 
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gyropendulum from the vertical, the following quantities are of direct 

interest 

M [CI (t)] = Re M [r (Ql, M [p @)I = Im Jf [r (t)l (1.8) 

D [ 1 T (0 I 1 = M [ ( ‘r (t) 1 ‘I - {M [I ‘r (t) 1 I>’ (1.9) 

and also the dispersions of a(t) and P(t), which can be determined from 

the formulas 

D [a @)I = +M [ 1 r(t) 1’1 t- f Re M [r2 @)I - {M [x (911” 

D [j (0 I = $ H 11 r (t) 1 2l - : Re M [r2 (t)l - (31 IP (t)l>” 
(1.10: 

3 Lower case latin letters will denote the mathematical expectation I. 

of the random functions denoted by corresponding capital latin letters. 

Let 

T (t) = 6 (t) + c, 
c = 

VI (t) + iw (4 

ihg [I + y (t)l 
(2.1) 

where 6(t) satisfies.the differential equation 

i (t) + igkl [I + Y (t)r 6 (t) = V,” (t) + iW,” (t) (2.2) 

VI0 (q = & W” (t) -I- nW” (ql, W,“(t) = &A [W” (t) - nV” (t)] (2.3) 

while the functions if’(t) and W”yo( t) are determined by the equations 

I/” (t) = v (t) - 2’ (t) - j& [Y (t) - Y @)I 

W” (t) = TV (t) - 7N (t) - 1 y (yl:l) [I’ (t) - y @)I (2.4) 

Equation (2.2) d oes not differ in appearance from the original Equa- 

tion (1.4), however, at its right-hand side, it contains functions which 

have a zero mathematical expectation. Let us represent the random func- 

tion 6(t) in the form of a sum 

6 (0 = $3 (t) + h(t) (2.S) 

where s,,(t) is the solution of the homogeneous equation corresponding to 

Equation (1.4) and the given initial conditions aO, F0 for a(t) and P(t); 
s,(t) satisfies (1.5) and zero initial conditions. Of course, 

Considering (2.1) and using the expression 
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2 (t1) = \ Y (tz)d& 
11 

(2.7~ 

we obtain 

6, (t) = (a0 + is, -c) exp {- ikg It + Z(O)]} (2.8) 

t 

h, (t) = \ exp {- ik,g (t - tr) - ik,gZ (tl)} [VI” (tl) + iWlo (tl)] dt, (2.9) 
u 
n 

After computing the mathematical expectation of both parts of (2.7) 

we obtain 

*klgZ ctl) [V,” (tl) f WI0 (t,)]} dt, (2.10) 

Let us denote the characteristic.functions of the systems of the 

random quantities T(t); V,‘(t), and consequently, Z(t,), !~lo(tl) by 

E& u2) and E(ul, us). Then we shall have 

_M (ecik~gZ (h) [Iflo (tl) + iII’,’ (t,)]) = 

In our further analyses, let us restrict ourselves only to the normal, 

stationary, random functions Y(t), V’(t) and "/O(t). In this case the 

function Z(t) will also be normal. Since the characteristic function 

Eb,, . . . . u,,) of the system of normal random quantities X,, . . . . X,, is 
uniquely expressed in terms of the elements of the correlation matrix 

II kjl II of this system, 

expressed by formula [2] 

and their mathematical expectation xi is 

E (q, . . . [in) r: CSI) -- 7 d X.j[ZZjZZl -k i x ZljXj c 1 ;, 
,t 

> (2.12) 
- j,Z-- I 1 

we obtain instead of (3.10) 
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Here 

k,, = D [z WI, h-r, = M {[z (tr) - 2 &>I V,” (t,)} 

k1, = ikf (12 @I) - 28 (Ml WI0 @I)) (2.14) 

When we denote by K (T) the correlation function of Y(t) and by 

ll (-r) and E: (1). the gorrelation functions of the coupling of Vgt) 

wY:h Y(t) arraYconsequently of We(t) with Y(t), and let 

(2.15) 

I(r) = 2 i (r - rr) & (~1) drr, ‘PI(~) = i&, (rr)dr,, ‘~2 (z) = 5 Rw, (~1) dz, 

0 0 0 

the moments (2.14) become 

All = f 0 - tl), h-,, = + +! [cpl@ -h) - 72 'p2 v - Gl 

A,, = y&IT2 (t - h) -t Tl @ - h)l (2.16) 

By substituting (2.16) into (2.13) we can separate the real part from 

the imaginary part: 

t 

M[h(Ql=: $1 exp W &)I Ucp2 (r) - ncpl @)I cos N (r) + 
0 

+ [cpl CT) + q32 WI sin N (r)> dr + 

+ 1 r;_ol,, s * exp IL (r)l Ocp2 CT) - vl (r)l sin N (r) + 
0 

-6 [cpl (.t) + nrpz (~)lcos AT (z)> dr (2.17) 

L(T)=--l[n(l+y)r+~o,j(r)], N(z)=o,[(l+y)z--o,f(z)l 

The mathematical expectation M[z~(T)] can be expressed in terms of 

the characteristic function E(u) of the quantity 

M [S,(t)] = {M [a01 + ii+f [9,] - c} e-iR1@ E(u) when u = - I;,g (2.18) 

After expressing E(u) explicitely in terms of the moments we obtain 

M [ho (01 = cxp (- 01 [n (1 + y) t + f @I(1 - n2) I (t,]} x 

X Jfla,l- 
IL 

II‘ 

0 (1 + ?I) 1 cos 01 I(1 -t Y) t - wf @)I + 
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-+ p NJ + 0 (I\ y) ] sin ml I(1 + y) t- nolf (t)l} + 

+~exp~--l[72(1-:-y)t+_101(l-n2)f(t)]}x 

x ii ~iPolt,(,Y+y)]COSOil(l i-y)~--~,f(t)l-- 

- Jf [a01 - w (ly_ y) 1 ] sin o1 I(1 + 14) t - null (Ol} (2.19) 

Formulas (2.9), (2.17) and (2.19) completely determine the mathe- 

matical expectation of the angles a(t) and P(t). 

For the determination of #[18,(t) {'I we multiply (2.3) by its complex 

conjugate and obtain 

/6,(t)\" = ~~e~~(-io,~(I-in)(1--t,)-(l-l-in)jt-~i,)~(l-~in)Z(t,)- 
f I 

- (1 y in) z (&J]j [v,; (tr) + ilvl” (f,)] [V,O (t?) - W,” (&)I dt,clt, (2.20) 

Let us study the system of normal random quantities z(t,), z(t,), 

V*(t,), V’(t,), ii’*( !f’*(t2) which we number in the order of their 

appearance. &e shall also identify the arguments rtr (r = 1, . . . . 6) of 
the characteristic function E by the same numbers as those of the random 

quantities. Then, we obtain for the mathematical expectation of (2.20) 

JlIjW)jT= &&xpl- io, [(I - i12)(L - t,) - (1 - in) (t - tz)]) :i 

i, IS 

When we also express here the characteristic functions by the elements 

of the correlation matrix 11 k' 11 of h Y t e s stem of random quantities 

under study and assume that di!~(t,)l = (t - t,)y we obtain 
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x [(A.,, - k,,) -- in (X ‘41 -t IQ,)] - [(kj, A,,) - in (kg ‘Ii,,)] x (2.22) 

x [(It,, - k,,) - in (k,, + Ii,,)] + i [(Aa - Ii,,) - in (I&, t- &)I X 

x [(A,, - k,,) - in (A,, _t Ii,,)] - i [(k,, - kJ2) - in (liJ1 t-- k,,)] X 

x [(&, - kbz) - in (I& $- kjz)] + com2(k3, i I+,, - L& 7 ik,,)} dt,, dt, 

When using (2.15) and denoting the correlation functions of V’(t) and 

We(t) by KJT) and KID(~) the last equation can be written in the form 

_*I [ 16, (t) 1 2] = i j e-D (T1. Td {A (tl, T,) c’OS [C (T1, 22)] - 
00 

- B (.tl, TV) sill [C (r,, z,)]} &irk, (L23) 

where 

B (T,, T2) = z2 {[2cf, (Tr - To) Cpl (‘Cz) --- XCpg (tl - T.I) qz (T& 

+ yI (T, -- T,) c#‘~ (T1 - T,)j - [& (Ta - Ttl) ‘PI (T,) + ‘Q (T2 - tl) ‘p:! (T1) -‘- 

7 v1 (Tl - TJ ‘p2 (T, - Tdlimn L%h (T2) - ‘pl (T2 - ~I)l12v2 hi -y2 PI - Gl- 

- n 12% (TI) - (fl (TI -- %)I [2% (h) - (p2 (G -- Tdl) ( 2.25) 

fs (% t %J = 01 t (r2 - zl) -nod (z2) + wf(G + (r2 - rl) ~1 (2.Zti) 

D (-cl, ~2) = + aI2 [(I -+ n2)f (z2 - TI) - 2n2f (r,) - 2n2f (r2) 1 + 

+ oln (TI f r2) (1 + y) (2.27) 

From (2.5) it follows that 

21 t I 8 (0 I 2l = M [ I 6, (t) I 1 + M I( 81 (t) 1 2] + 2 Rc 111 [ho (t) ~5~ (t)] (2.28) 

The mathematical expectations entering the last equation can also be 

found by the same method as M[ls,( t) 1 *I . If we assume for simplicity 

that a0 and pa are mutually independent, have zero mathematical expecta- 

tions, and do not depend on Y( t ) , V’(t) and V”( t) , we obtain 
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Jf 1 1% (t) 1’1 = iD [%,I + D [PO]) exp [-- 2nqt -)- 2n2w12/ (t)] 

Re M [6,(t) 6, (t)] = 0 (2.29) 

Analogously to Formula (2.23) it follows from (2.9) that 

lje M [blz(t)] = \ 5 e-D1 (~1, ~2) {1(1-n2)ii,(~~,~*)+2nB, (~,,~2)l”~SC’I (~I,%)+ 
“0 

-I- !(I - n2> & (% %J - hA,(r,, ‘c,)] sin C, (T1, Z,)}dT,dT, (-!.:~I,) 

where 

D, (~1, 4 = 01 {n (~1 +- ‘~2) + 

0'j.l (%Y G) = 12Tj (TJ - ‘OJ ( T,, - q)l mp/ (c,,) - ‘p1 (tq - q,)l (2.34) 

(j, 1, p, (1 mm: 1, 2) (2.35) 

and BVW(-r) is the correlation function of the coupling of V'(t) and 

V'(t). In such a fashion we obtain from (2.8) 

Re i&f [ ho2 (t)] = {D [ cc01 - D [ f3,] c’} esp [ - 2no,t - :! ( 1 - n’) ti,‘f (t)] b; 

;. I’C)S $!w, [f -- 2o,n/(t)]} (2.3ti) 

Finally, considering the assumptions on the initial conditions, we 

obtain 

(2.37) 

i.e. we will have all necessary formulas for the calculation of the dis- 

persions of a(t) and P(t), determined by the equalities (1.10). 

3. Let us now analyze the obtained results. At first, let us study 

the motion of a gyropendulum without any damping. After substituting 

R = 0 into (2.17) and (2.19) and assuming that in that case o1 = o, we 

oljtain I'or t:ie ii:atirer.latical cu;:ectationa of L!ke an,:ular .!eElections of 



Motion of a gyroscopic pendulum 609 

- 
[ JJf [sol - o (I”;- y) 

]sin(o(l -I- y)t]) _i- o\F(T)q2(T)sin[a (I. 
0 

where 

F(t) = exp [ - a df (t)l 

Y) 4 dr+ 

(3.2) 

Turning to Formulas (2.15) we see that for large values of t one can 

assume the function f(t) to be a linear function of time since 

t(t)=2t~R,(~)d~-2ErKl,(r)dr=2t~K.(r)dr- 
n 6 Ii 

x: 
-2 z;ti,(+lz=at-6, 

c 
a = zzL$, (0) (3.3: 

i 

Ilere S (0) is the spectral density of Y(t) and, consequently, the CO- 

efficientYn cannot be negative and goes to zero only when S (0) = 0. 

This will occur, for instance, when Y(t) is a derivative ofYa stationary 

random function. 

On the other hand, Formulas (2.15) show that 

Iimcp, (t) = Cl, limcp, (t) = c2 as t + DC (3.4) 

Let n = 0. If in this case ci = 0 and c2 = 0, then from (3.11 and 

(3.2) it follows that for sufficiently large t the mean position of the 

pendulum axis will begin to precess with a constant angular velocity 

~(1 + y). The amplitude of this precessional motion depends not only on 
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the mathematical expectation of the initial conditions (first terms in 

the formulas), but also upon the correlation functions of the coupling 

between the vertical and horizontal components of acceleration of the 

support (second terms). Here the axis of precession will not coincide 

with the vertical, since M[a(t)I and M@(t)] will contain besides the 

harmonic terms, items of the form 

which can be assumed to be constant for large t. 

For a > 0 the precession of Ma(t)] snd ~[p(t)], which depends on the 

initial csnditions, will attenuate with time, since the corresponding 

terms of (3.1) and (3.2) contain the factor F(t) and lim f(t) = 0 as 

t - m. For the same reason the precession caused by the presence of a 

correlation coupling between the acceleration components will also 

attenuate. 

The attenuation of the precessional motion without damping, which is 

caused by the presence of the random function Y(t) in the left-hand side 

of (1.4), distinguishes the studied case from the motion of gyroscopic 

pendulum without random vertical motions of its point of suspension. 

In the presence of damping, as can be seen from Formulas (2.17) and 

(2.19), the attenuation of the precessional motion will take place also 

for S (0) # 0. After this attenuation of the precessional motion, MCa(t)l 

andH />(t)]will be different from zero. I? 

Let us study the general character of the change of the dispersion of 

the angular deflection of the pendulum axis. Here we shall restrict our- 

selves to the study of D[al(t)] and D@,(t)], i.e. the dispersion of the 

deflections which are not related to the initial conditions. 

Without damping, Formula (2.23) takes on the form 

MI f &(t)121 = GlF(r,- ~,?{Wl(tl--~JrpI(% -%) + . 
00 

I- 'p?(%---%)(Pz (G-%)$_ +% [R" (% - G) ?- Rw(% - tl)l}~T,rtz, (3.5) 

Under the integral sign we have an even function of the difference 

T = T2 - T1' Thus, we can carry out one integration: 



Alotior6 of o gyroscopic pendulum 611 

(3.6) 

For n = 0 the Expression (2.30) becomes 

Re M 161~ (Z)I = a2 i i F3 (~1) F3 62) F-l (~2 - r,) (m2.2 (~1, ~2) - @)1,1(% f2) + 

+“.$ [Ku, (~2 - ‘t,) - Rv (~2 - ,q)l} dMr2 (3.7) 

If a = u, c1 # 0 and c2 # 0, then (3.4) will grow with time, and (3.7) 

will not contain any terms which grow as t - a. Consequently, the dis- 

persions a,(t) and PI(t) will grow with time. 

If a > 0, then (3.6) as well as (3.7) tend towards constants with 

time, and consequently, also the dispersions of the angular deflections 

of the axis of the gyropendulum will tend towards constants. 

In the presence of damping Formulas ( ?.23) and (2.30) still remain 

valid. Since in this case, the exponents of - D(T~, T*) and - D1(-rl, TV) 

tend to - m with an increase in their arguments, while all remaining 

factors in the integrands are either hounded or are decreasing, the dis- 

persions of a,(t) and PI(t) will tend towards constants as t _ m regard- 

less of the value of a. 

4. As an example, let us study the behavior of a gyropendulum placed 

aboard a ship. In contrast to 141 we shall consider here also the 

vertical component of the acceleration of the pendulum support. The 

heaving of the ship is assumed to be irregular. Let us assume that the 

pendulum is placed in a diametral plane of the ship at a distance xc 

from the midship bulkhead and that it has an elevation above the center 

of gravity of the ship (at the equilibrium position of the ship) equal 

to LC. 

For the sake of simplicity we shall assume that there is no orbital 

motion of the center of gravity of the ship and no jerking. We shall 

take into account only the rolling and pitching motions which are 

characterized by the roll angle 8(t) and the pitch angle ‘f’(t). In this 

case, the components of acceleration of the point of suspension of the 

pendulum are 

One can assume with sufficient accuracy that the angles of the ship 

movement are stationary, not coupled by normal functions [3]. In this 
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case, the correlation 

511 = $ can be written 

functions of the angular velocities R, = 6 and 

in the following form 

where A, and h, are close to the natural frequencies of the roll and 

pitch motion, respectively; ~1 and cog depend on the character of the wave 

motion and the parameters of the ship. For computational purposes we let 

al = lx* = 0.075 l/set, ~1 = 0.05 l/set, Hz = 0.10 l/see, 

Al = 0.75 l/set, A, = 1.50 l/see. xc = 28 m, zC = 14 m, 

H = 1.708 x 10’ gr cm see, mgl = 1250 gr cm. 

At first, let us retain in (4. I) only terms of the first order. In 

this case 

At = ZC 9, A, == - z,& AL =: - zc+, f+ zzz a, c (Ji z.10 

v (f) f=: kc, 6, W (t) - kzc iir, 0 :: IO r= 0 i,‘> 3, 

which together with (2.15) yields 

(4.4) 

'pl‘@) = 0, 

When we assume zero 

according to (2.17) 

‘F2 @) = - 

kxcz,bz3 (e2 + hz”) 

ch2 
e -‘LzJfisinhplt] 

initial conditions and no damping we obtain 

For the chosen numerical values K = 1.25 x 10P6. Then one can expand 

the exponential functions under the integral sign in (4.5) in series of 

powers of K and retain only the first term of the expansion. 
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After the integration is carried out, terms containing the factor 

exp( - vq t) are neglected, and it is assumed that for the chosen numerical 

values o << A, and w (< ~2, we obtain 

M[a(t)]~-x$- or X [CL (1)] z - 6.2. lo-’ = - 0.13” 
e 

In the given case, disregarding the fact that u = 6, a regular pre- 

cession does not occur, since cl = c2 = 0, because of the form of the re- 

lation between Ai, A,_, and AT. 
5 

When we substitute (4.4) into (3.6) and utilize the same approxima- 

tions we obtain 

Re 

WC? 

Substituting the numerical values we obtain 

When we compute Re M[612( t)] in .a similar fashion we find that 

M[612( t)I << Y[lS,( t) I21 and since M@( t)I = o and I[a(t)l is small, 

obtain for the mean square deflections of the angles a(t) and F(t) 

which yields, for instance, for t = 10 min and t = 24 hr. ao = u - 2.7 

and ao = u 
P 

= 3.1’. respectively. 
P 

In the presence of damping, numerical results can also be obtained 

quite simply if n is assumed to be small, and one performs series ex- 

pansions in terms of K and n in the formulas for the mathematical expec- 

tations and dispersions. 

If we retain the discarded second order terms in the original expres- 

sions (4. l), then the functions Y(t), Y(t) and W(t) will already be not 

normal, and all formulas obtained for the moments of the random quantities 

(x(t) and p(t). lack accuracy, since in their derivation we used the 

characteristic functions for normal random quantities. An improved 

accuracy can be achieved using the expression for the characteristic 

function which corresponds to the expansion of the propagation law into 

an gdgewart series [21, which takes into account higher moments of random 

quantities. In the given example, the deviation from the normal law is 

caused by second order terms and is not significant. Thus, assuming that 

all formulas derived above are also applicable in the present case, we 

shall consider only changes of the values of the mathematical expectations 
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and dispersions Y( t), V(t) and W(t). 

If we keep the nonlinear terms in (4.1) we obtain 

AS a result of the presence of the second term in the expression for 

KY(~) the function f(t) will depend on time for large t; ne,vertheless, 

although the correlation functions of the coupling between ROY(~) and 

RWy(?) did change the constants cl and c2, will still be equal to zero 
as before. Thus, the general character of the motion of the pendulum wil 

remain as before, only that. because of the fact that a > 0, the attenu- 

ation of the precessional motion will proceed more rapidly, and ~[]y( t) II 
will tend towards a constant value. 

As was noted above, the consideration in the expressions of character- 

istic functions of the higher moments of the ordinates of functions Y(t), 

V(t) and W(b) does not present principal difficulties, however, it 

naturally complicates the computational process. 
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